Surface-Enhanced Raman Spectroscopy Assisted by Radical Capturer for Tracking of Plasmon-Driven Redox Reaction
نویسندگان
چکیده
The deep understanding about the photocatalytic reaction induced by the surface plasmon resonance (SPR) effect is desirable but remains a considerable challenge due to the ultrafast relaxation of hole-electron exciton from SPR process and a lack of an efficient monitoring system. Here, using the p-aminothiophenol (PATP) oxidation SPR-catalyzed by Ag nanoparticle as a model reaction, a radical-capturer-assisted surface-enhanced Raman spectroscopy (SERS) has been used as an in-situ tracking technique to explore the primary active species determining the reaction path. Hole is revealed to be directly responsible for the oxidation of PATP to p, p'-dimercaptoazobenzene (4, 4'-DMAB) and O2 functions as an electron capturer to form isolated hole. The oxidation degree of PATP can be further enhanced through a joint utilization of electron capturers of AgNO3 and atmospheric O2, producing p-nitrothiophenol (PNTP) within 10 s due to the improved hole-electron separation efficiency.
منابع مشابه
Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملMechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol
Surface plasmon assisted catalysis (SPAC) reactions of 4-aminothiophenol (4ATP) to and back from 4,4'-dimercaptoazobenzene (DMAB) have been investigated by single particle surface enhanced Raman spectroscopy, using a self-designed gas flow cell to control the reductive/oxidative environment over the reactions. Conversion of 4ATP into DMAB is induced by energy transfer (plasmonic heating) from s...
متن کاملA plasmon-driven selective surface catalytic reaction revealed by surface-enhanced Raman scattering in an electrochemical environment
Plasmonic catalytic reactions of molecules with single amine or nitro groups have been investigated in recent years. However, plasmonic catalysis of molecules with multiple amine and/or nitro groups is still unknown. In this paper, plasmon-driven catalytic reactions of 4,4'-dinitroazobenzene (DNAB), 4,4'-diaminoazobenzene (DAAB) and 4-nitro-4'-aminoazobenzene (NAAB) are investigated using elect...
متن کاملUnification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles
stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کامل